Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment
نویسندگان
چکیده
This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.
منابع مشابه
Cramer-Rao Lower Bound for NDA SNR Estimation from Linear Modulation Schemes over Flat Rayleigh Fading Channel
In this contribution, Cramer-Rao lower bound (CRLB) for signalto-noise ratio (SNR) estimation from linear modulation signals over flat Rayleigh fading channel is addressed. Therefore, we derive the analytical expressions of Fisher information matrix entries that assess the optimal variance of any unbiased SNR estimator. Based on statistical Monte Carlo computing method, simulation results are d...
متن کاملImproved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملAn Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting
Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...
متن کاملBarankin Bounds on Parameter Estimation Accuracy Applied to Communications and Radar Problems
The Schwartz Inequality is used to derive the Barankin lower bounds on the covariance matrix of unbiased estimates of a vector parameter, The bound is applied to communications and radar problems in which the unknown parameter is imbedded in a signal of known form and observed in the presence of additive white Gaussian noise. Within this context it is shown that the Barankin bound reduces to th...
متن کاملA Novel Frequency Synchronization Algorithm and its Cramer Rao Bound in Practical UWB Environment for MB-OFDM Systems
This paper presents an efficient time-domain coarse frequency offset (FO) synchronizer (TCFS) for multi-band orthogonal frequency division multiplexing (MB-OFDM) systems effective for practical ultra-wideband (UWB) environment. The proposed algorithm derives its estimates based on phase differences in the received subcarrier signals of several successive OFDM symbols in the preamble. We conside...
متن کامل